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Abstract 
Еstimation of crop canopy parameters is important task for remote sensing monitoring of 

agriculture and constructing strategies for within-field management. The main objective of this study 

is to evaluate the retrieval from Sentinel-2 images by parametric and non-parametric statistical models 

several crop canopy parameters for monitoring before winter and after winter rapeseed crop in real 

farming conditions of North East Bulgaria. For the calibration of the models in-situ data from three 

field campaigns is used. For most of the studied parameters models with good accuracy were identified, 

except for aboveground fresh biomass. The best identified model for vegetation fraction 

(RMSEcv = 0.14 %) and plant density (RMSEcv = 9 nb/m2) were parametric models with three band 

vegetation index (3BSI-Tian) and linear fitting function for the first, three band vegetation index (3BSI-

Verreslt) and polynomial for the second parameter. For aboveground dry biomass (RMSEcv = 

52 g/m²), mean plant height (RMSEcv = 4 cm) and nitrogen content in fresh biomass (RMSEcv =  

2 g/kg) the best models were non-parametric, Gaussian Processes Regression for the first parameter 

and Variational Heteroscedastic variant of the Gaussian Processes Regression for the other two. 

 
 
 

Introduction 
 

Quick and accurate retrieval of crop canopy parameters is of importance for 
remote sensing monitoring of agriculture. Rapeseed is one of the most important 
oilseed crops worldwide [1] and it is monitored by traditional methods [2] as well as 
by remote sensing [3–5] .  

One of the important periods in the development of winter rapeseed crop is 
the before winter and after winter period [6]. Before winter, the condition of the crop 
is evaluated regarding its preparation to withstand the winter meteorological 
conditions. The rapeseed crop should be developed enough before winter, but the 
plants should not be developed beyond a certain threshold because they are more 
sensitive to low temperatures and frost. The rapeseed plants compete for light and 
when there is an uneven plant density or weed development, the plants develop in  
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height and again become more susceptible to frost. After winter, the condition of the 
crop is evaluated regarding its plant density, phenological phase and frost damage. 
A decision is often made to keep the rapeseed crop because enough plants survived 
the winter and they have good change for a satisfactory yield, or to destroy the 
rapeseed crop and plant the field with spring crop.  

The traditional monitoring is based on parameters like plant density, 
phenological phase, biomass. This study is focused on remote estimation of several 
crop canopy parameters of winter rapeseed with the purpose to be able to use them 
for before winter and after winter monitoring and within-field management. 

Historically, Vegetation indices (VI) with regression functions are used to 
retrieve biophysical parameters, such as aboveground biomass [7] or vegetation 
fraction [8], agronomical parameters, such as plants density [9], or growth 
parameters, such as plant height [3]. More recently, VI types of formulas are used 
with all available wavelength and different regression functions for retrieval of 
biophysical parameters, such as leaf area index and leaf chlorophyll content, called 
“spectral index optimization” [10] and retrieval of nitrogen concentration, was 
obtained by non-parametric models [11–15]. All those methods use in-situ sampled, 
or simulated, data for the modeled canopy parameters and associated surface 
reflectance from remote sensing sensor. In our approach we use in-situ sampled data 
and Sentinel-2 associated surface reflectance. 

In order to determine the variability of the fields before the actual collection 
of the field data [16], the sample locations were determined by calculating VI, Table 
1, that correlate with the rapeseed canopy parameters that we are interested in. A VI 
that was not tested with rapeseed but was specially tested with Sentinel-2 images 
[17] was also included in the list. The selected VI, Table 1, were calculated on the 
Sentinel-2 image from 12.11.2017, downloaded from Copernicus Data Open Hub in 
2A product (https://scihub.copernicus.eu). The samples were positioned manually to 
capture the maximum vegetation variability of the test fields and in relatively 
homogeneous surrounding area of 20 m² in terms of vegetation density and growth 
phase  

The main objective of this study is to evaluate the retrieval from Sentinel-2 
images by parametric and non-parametric statistical models several crop canopy 
parameters for monitoring before winter and after winter rapeseed crop. 

 

 

 

 

https://scihub.copernicus.eu/


77 

Table 1. Vegetation Indices used to position the location of the samples 

for the field campaign 

Estimated 

parameter 
Vegetation Index Formula Reference 

Aboveground 
biomass, number of 
plants per m2 after 

emergence 

RVI 
(Ratio Vegetation 

Index) 
NIR / Red [9] 

 

Aboveground 
biomass 

OSAVI 
(Optimized Soil 

Adjusted Vegetation 
Index) 

(1 + L)(NIR − Red) / 
(NIR + Red + L) 

(L = 0.16) 
[7] 

LAI 
 

SAVI 
(Soil Adjusted 

Vegetation Index) 

(1 + L)(NIR − Red) / 
(NIR + Red + L) 

(L = 0.5) [18] 
Canopy chlorophyll 

and nitrogen 
CiredEdge R783/R705 − 1 [17] 

Plan height 
 
 
 

EVI (Enhanced 
Vegetation Index) 

 
 

EVI = G × ((RNIR − 
Rred) / (RNIR + C1 × 

Rred − C2 × Rbleu 
+L)); G = 2.5; C1 = 6; 

C2=7.5; L = 1 

[3] 

Vegetation Fraction 
 
 

VARIgreen (Visible 
Atmospherically 
Resistant Index) 

 

(R550 – R670) / 
(R550 + R670) 

 
[8] 

 
Number of plants 
per square meter 
after emergence 

NDVI (Normalized 
Difference 

Vegetation Index) 

(NIR − Red) / 
(NIR + Red) 

 
[9] 

 
 
Materials and Methods 
 

Study area 
 

This study area is part of the East Danube plain in Bulgaria, Fig. 1, and the 
study period was over one growing season, from September 2017 to July 2018, on 
three mass fields sown with different hybrids of winter rapeseed. The area is mostly 
flat, the soil has mainly sandy loam texture, the climate in this region is Moderate 
Continental with cold winters and hot summers (mean daily temperature 10.2º C), 
and an annual cumulative rainfall of 540 mm.  

The bigger of the field plots (P1) is 137 ha and was planted for three days, 
from 03.09.2017, with sowing rate of 80 plants/m2. The other two plots are smaller, 
one (P2) is 10 ha, planted on 28.08.2017 at sowing rate of 56 plants/m2 and the other 
(P3) is 15 ha, planted on 04.09.2017 at sowing rate of 76 plants/m2. 
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Fig. 1. Location of the field sites near Dobrich, North East Bulgaria 

 
In-situ data 
 

The crop canopy parameters were measured within 1 m2 elementary 
sampling units (ESU) at the pre-defined samples location. Each ESU was geo-
located by means of a GPS, with an accuracy of ±3–5 m. For the aboveground fresh 
biomass (FBM), all plants in the ESU were manually cut, stored in paper bags and 
transported to a laboratory. 

In the laboratory the FBM is weighted (in g/m2) and then, a sample of it is 
oven-dried at 105° C until constant weight to obtain the dry biomass (DBM), 
measured in g/m2. In each ESU the density (number winter rapeseed per m2, 
NbPlant) was counted and recorded. The mean plant height of all plants (PlantH) in 
an ESU was recorded as well, in cm. The vegetation fraction (VF) as described by 
[19] was expertly estimated and photographed. The recorded VF includes the 
rapeseed plants and the weeds. The nitrogen content in g/kg (N) was measured from 
a sample of the FBM by Kjeldahl method [20]. The crop canopy parameters were 
measured during three field campaigns, two before winter and one after winter, 
Table 3. At each field campaign, Table 3, the ESU at a given sample location was 
positioned near the one from the previous field campaign. 
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        Table 2. Descriptive statistics for the measured crop canopy parameters  
 

Parameters 
Number 

of ESU 
Mean 

SE 

Mean 
StDev Minimum Maximum 

FBM (g/m2) 30 1058.00 151.00 829.00 146 2 761 
DBM (g/m2) 30 124.50 17.80 97.60 18 332 

VF (%) 30 0.58 0.05 0.28 0.15 1.00 
NbPlant (nb/m2) 30 36.13 3.18 17.42 10 95 

PlantH (cm) 45 15.67 0.83 5.57 9 28 
N (g/kg) 30 10.28 0.26 1.39 7.54 13.46 

 
Because of the meteorological conditions, some of the plants started growing 

immediately after sowing but many had more than a month delay. Particularly the 
plots P2 and P3 were with plants in very different phonological phases, from 
BBCH13 to BBCH19 [21], during the before winter field campaign. This difference 
in the phenological phase was completely reduced after winter, where all plots were 
at BBCH50/BBCH51. 
 

Remote sensing data 
 

Sentinel-2, sensor S2A and S2B, data was used for the study. Cloud free 
images closest to the field data collection were selected at Copernicus Open Hub 
Access (https://scihub.copernicus.eu). All spectral bands of 10 m and 20 m spatial 
resolution are used, from level 2A products. It provided 10 spectral bands from 
490 nm to 2 190 nm, resampled at 10 m spatial resolution. 

 
Methods 
 

Two types of models for crop canopy retrieval are studied: (1) the parametric 
univariate regression models with a Vegetation index (VI) as independent variable 
and (2) the non-parametric multivariate regression models with all the 10 spectral 
bands from the remote sensing data as independent variables. In both models the 
crop canopy parameter is the dependent variable. 
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Table 3. Timing of the field campaigns and satellite acquisitions with corresponding 

measured parameters 

Field 
Plot 

Nb 
of 

ESU 

Before Winter After Winter 

Sampling 
date 

Crop 
Canopy 
param. 

Sentinel-2 
image date 

(sensor) 

Sampling 
date 

Crop 
Canopy 
param. 

Sentinel-2 
image date 

(sensor) 

P1 9 23.11.2017 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH 

29.11.2017 
(S2A) 01.4.2018 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH, 

N 

03.04.2018 
(S2B) 

  13.12.2017 PlantH, N 12.12.2017 
(S2A) 

   

P2 3 23.11.2017 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH 

29.11.2017 
(S2A) 01.4.2018 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH, 

N 

03.04.2018 
(S2B) 

  13.12.2017 PlantH, N 12.12.2017 
(S2A) 

   

P3 3 24.11.2017 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH 

29.11.2017 
(S2A) 01.4.2018 

FBM, 
DBM, 

VF, 
NbPlant, 
PlantH, 

N 

03.04.2018 
(S2B) 

 
 

13.12.2017 PlantH, N 12.12.2017 
(S2A)  

 
 

 
Model Selection 
 

The first step consists in model conceptualization and selection. The selected 
models are parametric univariate and non-parametric multivariate regression 
models, as described in [22], and they are applied using the Automated Radiative 
Transfer Models Operator (ARTMO) package (http://ipl.uv.es/artmo/).  

In the first type of models it is not really VI that is selected but rather general 
formula to be used, because all the top of canopy reflectance of the spectral bands 
are tested with all formulae, Table 4. Also, different fitting functions are used for the 
regression: linear, exponential, logarithmic, power and polynomial. The first six VI 
from Table 4, are the same one used in the preliminary study to determine the 
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samples location. Two more 3 bands VI were added to the list because they are 
reported [23–24] to perform better for retrieval of biophysical variables and leaf 
nitrogen concentration. 

The evaluated non-parametric multivariate regression models are Least 
Square Linear Regression (LSLR), Principal Components Regression (PCR), Partial 
Least Squares Regression (PLSR), Kernel Ridge Regression (KRR), Gaussian 
Processes Regression (GPR) and the Variational Heteroscedastic variant of the 
Gaussian Processes Regression (VHGP). For non-parametric multivariate regression 
models the "curse of dimensionality" [25] could represent a problem. Therefore, 
some of the selected models have dimension reduction, like PCR, PLSR, KRR. PCR 
and PLSR have been developed for cases, as is of this study, where there are many, 
possibly correlated, predictor variables and relatively few samples [26]. GPR is 
reported [27] to be a robust model for biophysical variables retrieval. GPR and 
VHGP are especially valuable [23] because they calculate a Coefficient of Variation 
(CV = σ/μ), where σ is the Standard Deviation (SD) around the estimated variable 
and μ the mean estimated variable. CV provides relative uncertainty of the estimated 
variable in %. Finally, LSLR was selected as the oldest method for comparison with 
the others. 

 
Model calibration/fitting evaluation and validation 
 

The model calibration, evaluation and selection will be treated together, 
because model selection is an integral part of the model fitting process and 
furthermore in the present study, the goal is not to evaluate one model alone, but 
rather compare and select a model [28].  

In the calibration step the parameters will be adjusted to make the model as 
consistent as the available data [29]. Model evaluation according to [30] consists in 
preliminary experiments and test of alternative scenarios. This part of the work was 
done previously in [31] and the results will be used in the development of the models 
in the present study. Namely, bare soil pixels are included in the input data for the 
models and the reflectance data is from 1 pixel, corresponding to the sample, without 
averaging with the pixels around. Because outliers in the data could cause distortion 
in the models [32], all crop canopy variables were tested for outliers with Grubbs 
test [33]. No outliers were detected at 5 % level of significance for smallest and 
largest data values, apart from one sample for NbPlant. The outlier sample is from 
plot P1, where the sowing rate is 80 plants/m2 and the measured sample had 95 
plants/m2. The decision was to remove the sample, because it was probably due to 
local malfunctioning of the sowing machine.  

 
 

file:///D:/DESSI/BAN/Papers/ARB2018/Remote%20estimation%20of%20crop%20canopy%20parameters%20for%20rapeseed.docx%23page2
file:///D:/DESSI/BAN/Papers/ARB2018/Remote%20estimation%20of%20crop%20canopy%20parameters%20for%20rapeseed.docx%23page2
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Table 4. Type of VI testes in the study. Ra, Rb and Rc are the reflectance  

for a given wavelength. 

Type index 
The formula is 

from the VI 
Formula Reference 

2 bands Simple ratio 
of reflectances 

RVI 
(Ratio Vegetation 

Index) 
Ra / Rb [9] 

2 bands normalized 
difference ratios of 

reflectances 

OSAVI 
(Optimized soil 
adjusted index) 

1.16 × (Ra – Rb) / 

(Ra + Rb + 0.16) [7] 

2 bands normalized 
difference ratios of 

reflectances 

SAVI 
(Soil adjusted 

vegetation index) 

1.5 × (Ra – Rb) /  
(Ra + Rb + 0.5) [18] 

 

2 bands Simple ratio 
of reflectances 

CIredEdge 
(Red-edge 

Chlorophyll Index) 
(Ra / Rb) − 1 [17] 

 
3 bands normalized 
difference ratios of 

reflectances 

EVI 
(The enhanced 

vegetation index) 

2.5 × ((Ra – Rb) / 
(Ra + 6 × Rb – 
7.5 × Rc + 1)) 

[3] 

2 bands normalized 
difference ratios of 

reflectances 

NDVI 
(Normalized 
Difference 

Vegetation Index) 

(Ra – Rb) / (Ra + Rb) [9] 

3 bands normalized 
difference ratios of 

reflectances 
3BSI-Verrelst 

 
(Ra – Rc) / (Rb + Rc) [23] 

3 bands normalized 
difference ratios of 

reflectances 
3BSI-Tian (Ra – Rb – Rc) / 

(Ra + Rb + Rc) [24] 

 
In model evaluation there is also the notion of evaluation of uncertainty and 

accuracy. In the present study there is an uncertainty because of the way the field 
data is collected (from only 1m2, without repetition of the measurements and geo-
located with GPS with an accuracy of ± 3–5 m), that could be considered as part 
of the dependent variables noise, but this uncertainty is not considered in the present 
study.  

Each goodness-of-fit statistic gives certain aspect of the model accuracy 
[34]. In this study the accuracy of the model will be based on Root Mean Square 
Error (RMSE), for the magnitude of error, and Coefficient of determination (R2), for 
the spatial patterns [34]. 

Leave-one-out cross-validation (LOOCV) will be used to get the expected 
prediction error, to help select the best model and to ensure that the model does not 
overfit. All models will be ranked by Normalized RMSE (NRMSE in %), 
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NRMSE% = 100 × (RMSE / Range(Obs)), because it is a goodness-of-fit measure-
ment that is suitable for comparison [34]. 

 
Table 5. Best parametric and non-parametric models for each studied crop canopy 

parameter. For all models, pixels with bare soil are included, except model marked by *. 

Variable Model Best Bands RMSEcv R²cv 
NRMSEcv 

% 

FBM 
(g/m2) 

EVI / 
Polynomial 

Ra:842, Rb:560, 
Rc:665 

421 0.75 15 

PLSR  429 0.74 16 

DBM 
(g/m2) 

EVI / 
Polynomial 

Ra:842, Rb:560, 
Rc:665 

52 0.73 16 

GPR 560;740;490;842 52 0.73 16 

VF 
(%) 

3BSI-Tian / 
Linear 

Ra:842, Rb:705, 
Rc:560 

0.14 0.81 14 

PCR  0.15 0.78 16 

NbPlant 
(nb/m2) 

3BSI-Verrelst / 
Polynomial 

Ra:665; 
Rb:842;Rc:560 

9 0.73 14 

PLSR  10 0.68 15 
PlantH  
(cm) 

3BSI-Verrelst / 
Power* 

Ra:490, Rb:842, 
Rc:560 

4 0.53 20 

VHGR 560;842;665;490 4 0.72 15 
N (g/kg) VHGR 665;842 2 0.74 15 

 
Results and discussion 
 

The best parametric univariate regression models with a VI as independent 
variable are ranked by NRMSEcv and R2cv > 0.5, for every variable, Table 5. 
However, the models for N and PlantH did not perform well with the added bare soil 
pixels. It was clearly visible in the scatter plot of “residuals vs predicted value” and 
“measured vs estimated”. New models for N and PlantH are fitted without the bare 
soil pixels. No satisfactory model was found for N. A weaker model was found for 
PlantH, Table 5. 

The best non-parametric multivariate regression models with all the spectral 
bands from the remote sensing data as independent variables, ranked by NRMSEcv 
and R2cv > 0.5, for every variable are in Table 5. All non-parametric models behave 
correctly with the bare soil pixels included.  

The comparison between parametric and non-parametric models for every 
crop canopy parameter shows, Table 5, that in terms of goodness-of-fit cross-
validation statistic the models have comparable performance. To be able to further 
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distinguish between their performance, each model is applied to the remote sensing 
images and the estimated values are compared to the measured values. The models 
that meet the criteria of R2 > 0.514 [36] and slop > 0.6 are considered only, Table 6 
and Fig. 2. 

 
Table 6. Comparison between measured/estimated values from models, where R²>0.514 

and slop > 0.6 
 

Model R2 Intercept Slop P 

S2_03042018_FBM_SI 0.84290 250.43 0.80541 7.86E-08 

S2_03042018_ML_PLS_FBM 0.82123 316.59 0.78671 2.23E-07 

S2_29112017_ML_GP_DBM 0.89341 13.003 0.74553 3.44E-09 

S2_03042018_ML_GP_DBM 0.88951 24.134 0.84835 4.60E-09 

S2_03042018_DBM_SI 0.82875 31.317 0.79268 1.58E-07 

S2_29112017_VF_SI 0.66756 0.098277 0.76144 3.49E-05 

S2_03042018_VF_SI 0.85872 0.079719 0.84443 3.33E-08 

S2_12122017_ML_VHGP_Ni 0.91985 0.94872 0.89149 3.47E-10 

S2_03042018_ML_VHGP_Ni 0.93942 0.84355 0.9036 3.66E-11 

S2_29112017_ML_PLS_NbPlant 0.78664 5.9884 0.81215 9.37E-07 

S2_03042018_ML_PLS_NbPlant 0.77134 7.2667 0.70727 3.55E-06 

S2_29112017_NbPlant_SI 0.79727 3.9772 0.79844 6.19E-07 

S2_03042018_NbPlant_SI 0.73464 8.5499 0.75636 1.11E-05 

S2_29112017_ML_VHGP_PlantH 0.86076 2.2378 0.76445 2.96E-08 

S2_12122017_ML_VHGP_PlantH 0.70192 3.7626 0.63536 1.43E-05 

S2_03042018_ML_VHGP_PlantH 0.87996 2.8455 0.81848 8.96E-09 

 
No model could estimate, according to the proposed criteria, the FBM before 

winter, however the DBM is estimated for before and after winter with the GPR 
model. On the other hand, FBM and DBM are highly correlated with Pearson’s 
correlation (r) of 0.99. For both periods the VF is estimated by 3BSI-Tian/linear, 
N and PlantH by VHGP. The NbPlant is estimated by the two types of models, the 
simpler will be considered, namely 3BSI-Verrelst/Polynomial. 
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a 
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 d 
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   e 
 

Fig. 2. Scatter plots of measured/estimated values from models, where R² > 0.514  

and slop > 0.6. a) DBM; b) VF; c) N; d) NbPlant; e) PlantH 

 
It is difficult to make comparison between the retrieval methods from the 

literature, because the different studies did not evaluate the same variables or used 
other measurement for accuracy [3, 7]. The DBM was evaluated by fitting 
parametric models and VIs [7], but the DBM is sampled from the whole growing 
season of the rapeseed, not only until Inflorescence Emergence stage (BBCH50). 
The NbPlant was sampled only at emergence and no measurement of accuracy is 
published [9] or Unmanned Aerial Vehicule (UAV) is used with shape feature 
recognition or classification [36–37]. The VF is studied with UAV with spatial 
resolution of  2.5 cm [8]. The model for retrieval of PlantH was evaluated by standard 
error of the estimate (SEE) [3], which is not one of the goodness-of-fit measurements 
of the present study. PlantH was also evaluate with RGB camera mounted on  
a UAV [38–39]. 

 
Selected model for each variable 
 

Aboveground Fresh Biomass (FBM) in g/m2: no model could estimate, 
according to the proposed criteria, the FBM before and after winter. 

Dry Biomass (DBM) in g/m2: for DBM retrieval, the GPR model is selected 
with the most relevant bands being the blue, green, middle red-edge and near infrared 
(λ = 560; 740; 490; 842). In related studies [3, 7, 40, 41] it was found that for crops 
or grass, DBM is best retrieved with visible and near-infrared reflectance which is 
in accordance with our results.  

The relative uncertainty, expressed by CV, is higher than 10 % for all 
periods, Fig. 3, meaning that those areas are retrieved with high uncertainty. The 
higher is the DBM the lower is the relative uncertainty of the model. 
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Fig. 3. GPR model for DBM retrieval, applied to the selected remote sensing images  

before winter and after winter 

 
Vegetation Fraction (VF): for VF retrieval, the 3BSI-Tian VI and linear 

fitting function is selected with the most relevant bands being the green, shortest red-
edge and near infrared (λ = 560; 705; 842). In related studies [8] it is reported that 
the VF for rapeseed crop before flowering is best correlated with green and red 
reflectance. For vegetation in general, VF is reported to be characterized [42] by 
green, red, shortest infra-red reflectance, red and near infra-red [43] or even only by 
visible reflectance [8]. It was remarked [43] that for higher vegetation cover the 
estimation is poorer. However, we cannot verify this statement in our study as no 
model with uncertainty calculation was selected.  
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Fig. 4. 3BSI-Tian VI / linear model for VF retrieval, applied  

to the selected remote sensing images before winter and after winter 
 

Plant density (NbPlant) in nb/m2: for NbPlant retrieval, the 3BSI-Verrelst VI 
and polynomial fitting function is selected with the most relevant bands being the 
green, red and near infrared (λ = 560; 665; 842). In related studies [9, 44] it is 
reported that NbPlant is best correlated to red, green and near infrared reflectance 
which is in accordance with our results. The after winter period shows decrease of 
the NbPlant, Fig. 5, compared to the before winter period. The sampled 
measurements show the same trend. 

 

 
Fig. 5. 3BSI-Verrelst VI / polynomial model for NbPlant retrieval, applied  

to the selected remote sensing images before winter and after winter 
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Mean Plant Height (PlantH) in cm:  for PlantH retrieval, the VHGP model 
is selected with the most relevant bands being the visible and near infrared (λ = 490; 
560; 665; 842). In related studies [3] it is reported that PlantH is best correlated to 
same reflectance as calculated by our model, Fig. 6. 

Nitrogen content in fresh biomass (N) in g/kg: for N (g/kg) retrieval, the 
VHGP model is selected with the most relevant bands being the red and near infrared 
(λ = 665; 842). In related studies [12–14, 41] it is reported that N is best correlated 
to visible and near infra-red. Some of those studies report also correlation to the 
longer red-edge, others to the shorter red-edge. One of the relevant bands selected 
by our model is close to the absorption of chlorophyll, located around 675 nm, and 
reported to characterize the nitrogen status of leaves [45] and the other is the near 
infrared that is reported [47] to determine the canopy structure. Crop phenology is 
found to be cause for substantial difference in canopy reflectance vs canopy 
chlorophyll content [46] and therefore canopy N. This is probably why in our study 
no parametric model could fit the before and after winter crop stage. However, the 
selected VHGP model gives almost constant uncertainty, between 10–20 %, Fig. 7, 
for before and after winter period where the rapeseed crop is in different 
phenological phases. 

 

 
 

Fig. 6. VHGP model for PlantH retrieval, applied to the selected remote sensing images 

before winter and after winter 
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Conclusion 
 

This study demonstrated that rapeseed crop canopy parameters before and 
after winter, such as, aboveground dry biomass (DBM), vegetation fraction (VF), 
plant density (NbPlant), mean plant height (PlantH), nitrogen content (g/kg) in fresh 
biomass (N), can be retrieved directly from remote sensing measurement from 
Sentinel-2 with good accuracy in real farming conditions of North East Bulgaria. 

 

 
Fig. 7. VHGP model for N retrieval, applied to the selected remote sensing images  

before winter and after winter 

 
For some of the parameters, VF (RMSEcv = 0.14 %), NbPlant 

(RMSEcv = 9 nb/m2), the best models were parametric and for others, DBM 
(RMSEcv=52 g/m2), PlantH (RMSEcv = 4 cm), N (RMSEcv = 2 g/kg), non-
parametric. It also demonstrated that for FBM no model could be selected for the 
both periods: before and after winter. The retrieved parameters and classification 
techniques can be used for delineating within-field units for which to develop 
different management. 
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Some of the studies parameters are not independent from one another. For 
example, FBM, VF and NbPlant, or PlantH, NbPlant and FBM. To be able to 
increase their retrieval accuracy multi-output regression algorithms can be used [50] 
in a future work. 
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ДИСТАНЦИОННО ОПРЕДЕЛЯНЕ НА ПАРАМЕТРИ НА ПОСЕВА  

НА ЗИМНА РАПИЦА ЧРЕЗ СТАТИСТИЧЕСКИ РЕГРЕСИОННИ 

АЛГОРИТМИ С ПОМОЩТА НА МУЛТИСПЕКТЪРНИ 

ИЗОБРАЖЕНИЯ ОТ SENTINEL-2 

 
Д. Ганева, Е. Руменина 

 
Резюме 

Определянето на параметри на посева на земеделски култури е важна 
задача за дистанционното наблюдение на селското стопанство и за изготвяне 
на стратегии за управление на полетата. Основната цел на това изследване е да 
се оцени извличането на параметри на посева на зимна рапица за два периода 
от растежа: преди презимуване и след презимуване, чрез параметрични и 
непараметрични статистически модели и Sentinel-2 изображения, в реални 
условия на земеделие в Североизточна България. За калибрирането на 
моделите се използват in-situ данни от три полеви кампании. За повечето от 
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изследваните параметри бяха идентифицирани модели с добра точност, с 
изключение за надземната свежа биомаса. Най-добрите модели за общо 
площно покритие (RMSEcv = 0.14 %) и гъстота на посева (RMSEcv = 9 nb/m2) 
са параметрични модели с три-канален вегетационен индекс (3BSI-Tian) и 
линейна функция за първия, 3-канален вегетационен индекс (3BSI-Verrelst) и 
полиномиялна за втория параметър. За надземна суха биомаса (RMSEcv =  
52 g/m2), средна височина на растенията (RMSEcv = 4 cm) и съдържание на 
азот в свежа биомаса (RMSEcv = 2 g/kg) най-добрите модели са 
непараметрични, Gaussian Processes Regression за първия параметър и 
Variational Hetero-scedastic вариант на  Gaussian Processes Regression за 
другите две. 
 


